- PII
- S0044453725030081-1
- DOI
- 10.31857/S0044453725030081
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 99 / Issue number 3
- Pages
- 433-441
- Abstract
- The results of liquid chromatography of a complex mixture of unsaturated lipid molecules as the basis of the hydrophobic matrix of biomembranes are summarized. The data of relative retention of such lipids, which included residues of the most important fatty acids, allowed calculating the most characteristic general parameters that satisfactorily determine their behavior when silver salt is introduced into a planar or column liquid chromatographic system in order to drastically increase the selectivity of separation of unsaturated lipid molecules from each other. A variant of quantitative estimation of the relationship between the level of selectivity of separation of particular molecules of natural lipids from each other and the proposed parameters of their constituent fatty acid residues, which are calculated on the basis of variations in the chemical potential of such molecules when silver appears in this system, is proposed.
- Keywords
- ионы серебра жидкостная хроматография ненасыщенные липиды
- Date of publication
- 13.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 14
References
- 1. Zhang C.-W., Wang C.-Z., Tao R., Ye J.-Z. // J. Chromatogr. A. 2019. V. 1590. P. 58. DOI: 10.1016/j.chroma.2019.01.047
- 2. Lu H., Zhu H., Dong H., et al. // J. Chromatogr. A. 2019. V. 1613. № 460660. P. 1–7 DOI: 10.1016/j.chroma.2019.460660
- 3. Huang S., Qui R., Fang Z., et al. // Anal. Chem. 2022. V. 94. P. 13710. DOI: 10.1021/acs.analchem.2c01627
- 4. Ullah Q. // J. Planar Chromatogr. Modern TLC. 2020. V. 33. P. 329. DOI: 10.1007/s00764-020-00048-7
- 5. Yoon J., Choi E., Min K. // J. Phys. Chem. A. 2021. V. 125. № 46. P. 10103. DOI: 10.1021/acs.jpca.1c05292
- 6. Hamieh T. // J. Chromatogr. Sci. 2022. V. 60. № 2. P. 126. DOI: 10.1093/chromsci/bmab066
- 7. Petersen M.L., Hirsch J. // J. Lipid. Res. 1959. V. 1. P. 152.
- 8. Ren Q.H., Rybicki M., Sauer J. // J. Phys. Chem. C. 2020. V. 124. № 18. P. 10067. DOI: 10.1021/acs.jpcc.0c003061
- 9. Vysotsky Y.B., Kartashynska E.S., Vollhardt D., et al. // J. Phys. Chem. C. 2020. V. 124. № 25. P. 13809. DOI: 10.1021/acs.jpcc.0c03785
- 10. Leasor C., Chen K.-H., Closson T., Li Z. // J. Phys. Chem. C. 2019. V. 123. № 22. P. 13600. DOI: 10.1021/acs.jpcc.9b01705
- 11. Nikolova-Damyanova B., Christie W.W., Herslöf B.G. // J. Chromatogr. A. 1993. V. 653. № 1. P. 15.
- 12. Vahmani P., Rolland D.C., Gzyl K.E., Dugan M.E.R. // Lipids. 2016. V. 51. № 12. P. 1427. DOI: 10.1007/s11745-016-4207-0
- 13. Dabrowska M., Sokalska K., Gumulka P., et al. // JPC-J. Planar Chromatogr. –Modern TLC. 2019. V. 32. № 1. P. 13. DOI: 10.1556/1006.2019.32.1.2
- 14. Пчелкин В.П., Верещагин А.Г. // Докл. АН СССР. 1991. Т. 318. № 2. С. 473.
- 15. Pchelkin V.P., Vereshchagin A.G. // J. Chromatogr. 1991. V. 538. № 2. P. 373.
- 16. Pchelkin V.P., Vereshchagin A.G. // J. Chromatogr. 1992. V. 603. P. 213.
- 17. Pchelkin V.P. // Russ. J. Phys. Chem. 2000. V. 74. P. 625.
- 18. Пчёлкин В.П. // Журн. физ. химии. 2003. Т. 77. № 9. С. 1652.
- 19. Пчёлкин В.П. // Журн. физ. химии. 2016. V. 90. № 9. P. 409. DOI: 10.6878/S1004445371690235
- 20. Pchelkin V.P. // J. Anal. Chem. 2020. V. 75. № 5. P. 615. DOI: 10.1134/S1061934820050159
- 21. Pchelkin V.P. // Current Chromatogr. 2022. V. 9. № 2. P. 1. DOI: 10.2174/ 2213240609666220120120113938
- 22. Mahato P., Mandal K., Agrawai S., et al. // J. Phys. Chem. Lett. 2024. V. 15. № 2. P. 461. DOI: 10.1021/acs.lett.3c03188
- 23. Bhowmick S., Maisser A., Suleimanov Y.V., et al. // J. Phys. Chem. A. 2022. V. 128. № 37. P. 6376. DOI: 10.1021/acs.jpca.2c02809
- 24. Andryushechkin B.V., Pavlova T.V., Shevlyuga V.M. // Phys. Chem. Chem. Phys. 2024. V. 26. № 2. P. 1322. DOI: 10.1039/D3CP04962K
- 25. Yasumura S., Kato T., Toyao T., et al. // Phys. Chem. Chem. Phys. 2023. V. 25. P. 8524. DOI: 10.1039/d2cp04761f
- 26. Gao H., Bi S., Chai J., et al. // J. Chrom. A. 2024. V. 1714. № 464579. P. 1. DOI: 10.1016/j.chroma.2023.464579
- 27. Arroyave J.M., Ambrusi R.E., Pronsato M.E., et al. // J. Phys. Chem. B. 2020. V. 124. № 12. P. 2425. DOI: 10.1021/acs.jpcb.9b10430
- 28. Bigi F., Cera G., Maggi R., et al. // J. Phys. Chem. A. 2021. V. 125. № 46. P. 10035. DOI: 10.1021/acs.jpca.1c07253
- 29. Jayalatharachchi V., MacLeod J., Lipton-Duffin J. // J. Phys. Chem. C. 2021. V. 125. № 26. P. 14326. DOI: 10.1021/acs.jpcc.1c02581
- 30. Krzykawska A., Szwed M., Ossowski J., Cyganik P. // J. Phys. Chem. C. 2018. V. 122. № 1. P. 919. DOI: 10.1021/acs.jpcc.7b10806
- 31. Du Z., Ding P., Tai X., et al. // Langmuir. 2018. V. 34. № 23. P. 6922. DOI: 10.1021/acs.langmuir.8b00640
- 32. Rathnakumar S., Bhaskar S., Sivaramakrishnan V., et al. // Anal. Chem. 2024. V. 96. № 10. P. 4005. DOI: 1021/acs.analchem.3c01441